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Bayesian Inversion of Simply Modeled Magnetic Anomaly Data

Jasmine Zitnik

ABSTRACT

The objective of this project was to develop a method to find a magnetic dipole buried beneath the earth’s surface
using Bayesian techniques to interpret magnetic field data collected at the surface. A computer was used to
simulate experimentally collected noisy data. The so-called “forward problem” was used to help understand the
Bayesian inverse problem solution technique to be used. From the experimental data generated, | was able to
predict the location of a single dipole in two dimensions. The overall purpose of this project was to develop the
beginnings of a quantitative technique that could be used to find magnetically active buried objects due to the earth
magnetic field anomalies created. The simple case of a single magnetic dipole was investigated to indicate the
potential problems that might occur with multiple dipoles in three dimensions.
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INTRODUCTION

The objective of my research was to find the spatial
distribution, orientation, and strength of a simply
magnetically interacting body buried beneath the
earth’s surface (a single dipole). | used Bayesian
analysis of magnetic anomaly data measured above
the earth's surface. | used a computer software
program to simulate the data and then entered the
data into a program to graph different vectors with
different directions to tell me the orientation and
strength.

Previous research has not taken into account
dipole size and shape. It basically uses the magnetic
field to form a contour map. Currently, work is on
going on this problem at Pacific Northwest
Laboratories. However, their work is on a broader
scale. They are trying to find buried bunkers and
hidden weapons (Cogbill 1995). | focused on the
smaller problem.

| had to be able to effectively handle “noise” from
the data for predictions to be accurate. The
discrimination between the actual object and the
noise around it is a very important step, due to the
fact that if noise is interpreted as part of the object,
skewed results will occur. | used standard magnetic
field formulas to do the “forward” problem and then
was able to use what | found to do the “inverse”
problem.

Scientists are continuously attempting to solve a
countless array of problems. These can generally be
classified in two groups: (1) Direct problems,
typically deterministic in nature, and (2) Inverse
problems which are often ill-posed in the
mathematical sense and, thus, usually require a
probabilistic approach to find a solution. An
example of an inverse problem from ordinary
experience might be a physicians’ diagnosis of a
patients’ illness.  Given the symptoms (noisy,
incomplete data) what is the disease (model), that is,
given the effects what are the causes? Direct or
forward problems usually start with a well-defined
algorithm or determination process, which is then

used to produce noiseless, complete data. It is not
hard to deduce that the majority of the problems
faced in life, both in the technical sense and non-
technical sense (e.g. daily decisions), belong in the
inverse category.

One inverse problem recently investigated
concerns the location of buried structures, which
create anomalies in the earth’s magnetic field in
localized spatial regions (Lessor 1997). Specifically,
man-made ferro- magnetic materials buried beneath
the ground’'s surface will often create discernible
earth magnetic field anomalies at the ground surface
(Bhattacharya 1964, Talwani 1965, Traynin 1993).
The question then becomes, “Can a suitable,
quantitative approach be developed to analyze the
earth’s surface data, i.e., noisy magnetic field data,
to answer a series of questions about what is buried
below ground surface?” Questions addressed might
be the location, size, shape, and orientation of a
buried object as well as other questions tailored to
the task at hand.

The approach of Lessor, et al, was to model any
buried ferro-magnetic man-made structure as a
complex of intermixed dipoles whose magnetic fields
are excited by the earth’s magnetic field and modified
by self-interaction. The general buried object
problem they posed is complex for many reasons, not
the least of which being the presence of magnetic
field noise resulting from naturally occurring
anomalies or other man-made structures producing
interference, but otherwise not of direct interest.
Although they made progress on this problem, the
simplest of situations was overlooked - a single
buried dipole - to answer some basic questions,
which remain open. Their questions address many
different issues including range versus resolution,
signal to noise degradation, coherent versus
incoherent noise, and magnetic field magnitude data
versus vector component data.

We focus here on a single buried magnetic dipole
and how to characterize it using a direct probability
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approach. This Bayesian approach, though not new, distribution, orientation, and strength of these
has yet to see wide spread use in inverse problem permanent dipoles?” We propose here to investigate
data analysis, although there is ample evidence of its one buried dipole to provide a starting point, or basis,
power as a general data analysis tool (Bretthorst to answer this question. We further simplify the
1988). situation to two-dimensions, working in the y-z plane
Visualize a randomly oriented set of dipole only for the three-dimension case using a line of data
magnets (bar magnets) buried beneath the ground taken along the y-axis direction.
with random locations and strengths. The question The equations for the three-dimensional vector
is this: “Can a plane of data collected near the magnetic field, when reduced to the y-z plane, are
ground surface be used to characterize the spatial given by standard texts:
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Here, T = (¥,2) s the field point vector which be drawn from a probability distribution, such as an
locates the data collection points,ﬁ = (Y,2) I.1.D. Gaussian or uniform. We start the formulation
locates the dipole, ¢ orients the dipole in two- of the data inversion process to estimate the
dimensions, and a gives the strength of the dipole. parameters o, ¢, and R by stating the usual
The adjustable parameter €, where g« |f—R‘] is “likelihood” for the parameters based on the data-
assumed, does not come from theory, but is added to model relation and the assumption that the noise is
“adjust’ the magnetic field for visualization purposes I1.D. Gaussian. This turns out to be a
and to prevent singularities when plotting the dipole mathematically simplifying assumption, but still will
field. This parameter is set to zero when the usually produce good conservative results for real
formulas above are used to generate data to be used data.
for inversion calculations. Figure 1. depicts the field - | ©)
of a dipole plotted on Mathematica software. The PBi| R o, 9,0) = [ ] - {_2_? [nYiz +lei2]}
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parameter ¢ has been adjusted to suppress the large
field component values found near the dipole center.

For one dipole, the data-model relation is: B
Here myi ~ Dyi—Byi Nzi Dzi_Bzi
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Di = Bi(1, 0, ¢,R) tni @ For the line data set {Di} the “likelihood term”
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the “line of data”. The two-component vector noise:
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has components which may or may not be
correlated. Typically, the noise vector is assumed to
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We re-write the data-model relation in (2) in a form
explicitly displaying the dipole strength parameter
QL.

R R (5)
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(6)

N N[ 22 g
IEIE G

P( Oy

2no

{;‘} ’K’ B o G) = {

N -

where h=2X

and <b|2> N > lﬁlz

N
> Di o b;
i=1 i=1

The likelihood function (4) has been brought into
the form of (6) so that we can integrate over the
parameter B to eliminate it from further consideration.
This is a theoretically correct way to reduce the
number of parameters in the problem. The so-called
“nuisance” parameter B can be estimated at the end
of the problem after we have determined optimal
values for the parameters R and ¢. The integral to
be performed is:
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and it is to be noted that the integrand contains a
probability density yet to be determined since the
integration variable appears to the left of the
conditional line rather than on the right as in previous
expressions.

We call upon Bayes’ Theorem to get an explicit
form for the integrand in (7):
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The above is written as a proportionality due to the
omission of an unimportant normalization constant
not appearing on the RHS. The density:
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is known as a prior probability density, or “prior”,
for the parameter . We are required to produce an
explicit form for this prior if we expect to perform the
integration in (7). Since data set {]'51} does not
appear in it, there is no reason to assume that the
prior is other than uniform and, therefore, it can be
ignored.
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Figure 1. Dipole without noise (above) and with
noise (below).

Integrating (7) gives:
(9)
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Since the domain of B is all real numbers, a little
thought will show that the domain of the orientation
angle is O<@<IT. Another application of Bayes'
Theorem yields:

p( (Di)
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For the present case, we assume ¢ is known and
since the prior form of R is also uniform we finally
obtain:
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It is the LHS of (11), which is to be maximized by
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varying the parameters ¢ andR to find their optimal
values under the assumptions stated for the priors
encountered due to Bayes' Theorem. In view of the
above, if the expression:

h* = h’ (g, K)

is maximized with respectto ¢ and R , the same
purpose is served. The question might be asked as
to why it is necessary to use Bayes’ Theorem to bring
the parameters ¢ and R from the right to the left
side of the conditional lines in the probability density
before optimizing. Indeed, a maximum likelihood or
least squares process does not require this, but
implicit in their standard approaches is the
assumption that all priors are uniform regardless of
possible prior information indicating otherwise. In the
problem formulation here for a single, buried dipole
we have assumed that the priors are uniform, mostly
for convenience, but generally they are not. If non-
uniform priors are required, then it is theoretically
incorrect to proceed with a least squares or
maximum likelihood formulation of an inverse
problem. Incorrect results will be obtained.

We have thus achieved one of the main goals of
this paper and that is to point out why a direct
probability approach using Bayes’ Theorem is
considerably more general, due to the requirement
for priors, than either least squares or maximum
likelihood approaches. If cogent prior information is
available before additional data is gathered, then
non-uniform priors could have an effect on predicted
parameter values. Least squares and maximum
likelihood processes ignore priors altogether. Also
such optimization processes cannot handle nuisance
parameters through marginalization. The direct
probability approach outlined here becomes powerful
when the number of parameters to be determined
becomes large, but only a few are of interest. The
remainder can be, at least in theory, eliminated
through integration and reducing the dimension of
the problem at hand.

To complete the formulation of the single dipole
inverse problem, we must obtain explicit forms for the
simultaneous equations resulting from:
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Note that h, previously defined for (6), depends on
the noisy data set {D } and field point line {rl} as
well as ¢ and R . Performing the derivatives results
in a set of three simultaneous equations to be solved
numerically for the optimal values of the location
parameter:

R = (Y,2)
and orientation angle ¢:
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R It fcﬂlows that when the data is noiseless, i.e.,
Di- Bi (12) is identically satisfied.

A second important goal was achieved above,
which was to derive a set of equations to locate and
orient a dipole using noisy field data while
eliminating, correctly, the need to consider dipole
strength. The direct probability approach used here
also has indicated the process for incorporating non-
uniform priors (cogent prior information before data
collection) even though for convenience we have
assumed all priors to be uniform and, therefore,
inconsequential. What has not been addressed is
how to determine explicit prior density functions that
are not uniform. The difficulty associated with
producing cogent priors has been the basis for
criticism of formulations of inverse problems using
Bayes' Theorem. We contend that there is nothing
wrong with the Bayesian approach. In fact, it is very
general and powerful in its ability to correctly
incorporate a variety of cogent information beyond
that found in just the latest set of collected data.
Further more, being able to marginalize nuisance
parameters can sometimes make an intractable
problem solvable.

MATERIALS AND METHODS

This is a theoretical project in which | used probability
techniques to define the parameters of a proposed
model based on anomalous magnetic field data.

My method for the forward problem was to
generate the data to make the picture. By this, |
used the equations that we came up with and put
them into Mathematic to create the picture of the
single dipole or how ever many | decided to generate
at the time and the ability to rotate the dipoles if |
chose to. | then used the computer to add “noise” to
the dipole. When this was done, | needed to find a
way to strip off a line of data to analyze. We had a
little trouble doing this because we were unsure of
the exact math software to use. Finding the right
math software was an adventure in itself, but when
we finally decided on a program to use, it went fairly
smooth.

My method for the inverse problem was to take the
data generated by Mathematic and plug it back into
Formula 12 and see if | could find the orientation,
strength, and its' distribution. The process | used to
do this was a function called FINDROOT. We came
up with the equations to put into the computer, but
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the computer solved them. Then my work was
complete.

The materials | used were the three different math
softwares available on campus and a computer.

RESULTS

Formula (12) was programmed into Mathematic for
testing and numerical solutions. Noisy data was
generated using Formula (1) and then adding
synthetic gaussian noise to form data lines as
previously described for the two-dimensional
problem. A typical signal-to-noise ratio of 1 or less
was used. These data lines contained from 3 to 40
data points to be used to solve Formula (12) for
dipole location. Dipole orientation was assumed
known to lessen the extent of numerical calculation
without sacrificing verification of the mathematical
approach. It was found that beginning guesses for
dipole location (required by the FINDROOT function
in Mathematic) had to be reasonably close to the
actual dipole location in order to minimize
accumulated numerical error indicating that in future
investigations numerical precision should be
increased considerably. The formulas appeared to
converge to the correct location for all tests if the
initial guesses were “close enough”. Since the
equations are non-linear, this is not surprising.
Finally, the dipole strength was eliminated from
consideration as discussed and, as hoped this
process did not seem to degrade location results, a
main goal of this project.

DISCUSSION

This is a project that should be taken much further.
The first thing that could be done is to solve the
single dipole problem in three-dimensional space.
Formulating the problem in three-dimensions is more
like the problem that people would face when using
this in the real world. Another idea would be to have
more than one dipole and make them different
strengths. Someone could also try different shapes
to alter the equations if they were not spherical in
nature. It would be interesting to see if the equations
we came up with work in more complicated situations
or if problems developed, how difficult it would be to
fix them if possible. Different math software could
also play a part in how much farther this project could
go. The programs | used were fairly powerful, but |
am sure there are better ones. We discovered that
the programs on campus are really slow when a big
vector field is being looked at with more than a few
points. Programs used in the future need to be more
powerful and installed on more powerful computers.
That may improve the accuracy of the results. If |
had more time, | would be interested in the three-
dimensional problem along with different shapes. |
think that this an interesting problem that should be
looked into in the future.
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